VIDHYADEEP UNIVERSITY Syllabus of B.Sc. Chemistry DCS Subject (According to NEP) Effective from 2023-2024 SEMESTER-I

Course			ļ	Semester I							
	Grade System:										
	TeachingExaminationSchemeScheme		Passing Scheme	Total M	larks						
Subject Code	Paper No.	Paper Title	Hours/ week	Credit	Th	eory	Passin	Passing Head			
					Internal	External	Internal	External			
004301101	ChemI	Fundamental of Chemistry-I	3	3	50	50	17	17	100		
004391241	Chem II	Introduction of chemistry - I	3	3	50	50	17	17	100		
004301102	Practical	Practical -I	4	2	50	50	17	17	100		

Course	name: : D	iscipline core				Semeste	er II		
			Gra	ide Syster	m:				
	Teac Sch	TeachingExaminationSchemeScheme		Passing Scheme		Total Marks			
Subject Code	Paper No.	Paper Title	Hours/ week	Credit	The	eory	Passing Head		
					Internal	External	Internal	External	
004301201	ChemI	Fundamental of Chemistry-II	3	3	50	50	17	17	100
004391242	Chem II	Introduction of chemistry - II	3	3	50	50	17	17	100
004301202	Practical	Practical-II	4	2	50	50	17	17	100

5	
Program	PO1: The aim is to augment one's knowledge in the various domains of chemistry and
Outcome	attain mastery in the chosen branch of the field, while also fostering clear and effective
	communication within and across disciplinary boundaries.
	PO2: Develop entrepreneurial skills by leveraging the industrial hub situated in the
	vicinity of our university.
	PO3: Establish a research centre with the support of interdisciplinary subjects offered at
	the university.
	PO4: Pursue a doctoral degree in the Organic Chemistry and continue further studies.
	PO5: Develop short-term courses relevant to the demanded subject to enhance
	knowledge and its practical application.
	PO6: Provide training/internship opportunities to students for employment in public
	and private sectors, as well as national laboratories.
	PO7: Engage in scientific discourse with a respectful demeanor and take the lead in
	interdisciplinary & multidisciplinary collaborations with experts from diverse fields.
	PO8: Acquire knowledge and implement best safety practices in chemical research &
	Industry.

Objective of	The primary goal of the M.Sc. organic chemistry program is to equip students with the
Program	skills and knowledge necessary to pursue dynamic careers in industry and academia
	by offering a superb teaching and research environment in both core and emerging
	areas of the discipline.

Program Specific	PSO1: Demonstrate a comprehensive understanding of the fundamental
Outcomes	principles, concepts, and theories in various branches of chemistry.
	PSO2: Apply theoretical knowledge and practical skills to analyze and solve
	complex chemical problems.
	PSO3: Utilize advanced laboratory techniques and instrumentation for chemical
	analysis and experimentation.
	PSO4: Apply mathematical and statistical methods to analyze and interpret
	experimental data in chemistry.
	PSO5: Communicate scientific information effectively through written reports,
	presentations, and scientific discussions.
	PSO6: Demonstrate awareness of safety protocols and ethical considerations in
	chemical research and laboratory practices.
	PSO7: Apply critical thinking and scientific reasoning to evaluate and interpret
	scientific literature and research findings in chemistry.
	PSO8: Exhibit teamwork, leadership, and interpersonal skills in collaborative
	scientific projects and research.
	PSO9: Adapt to emerging trends and advancements in chemistry, demonstrating
	a commitment to lifelong learning and professional development.
	PSO10: Apply chemical knowledge and skills to contribute to the development
	of sustainable practices and solutions in various industries and societal
	challenges.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between	PO1	\checkmark	✓		\checkmark		✓	✓	✓	\checkmark	\checkmark
POs and	PO2	✓	✓			✓			✓		
PSOs	PO3			✓	✓	✓				✓	
	PO4	✓	✓	✓			✓	✓	✓	✓	✓
	PO5	✓			✓	✓		✓			
	PO6		✓	✓			✓		✓	✓	√
	PO7	✓			✓			✓			
	PO8		✓			✓			✓		✓

SEMESTER - I

CHEMISTRY - I

Fundamentals of chemistry – I

Course	CO-1: distinguish between atomic and molecular orbitals, bonding and antibonding
Objectives:	molecular orbitals, different theories of co-ordination chemistry.
-	CO-2: understand basic concepts of organic qualitative analysis : elements equation
	,solubility of organic compound .
	CO-3 : study of IUPAC ,nomenclature, rules of nomenclature ,nomenclature of
	organic compounds examples.
	CO-4: understand Second law of thermodynamics (in detail), Carnot cycle and its
	efficiency, Entropy concept, Change of entropy for reversible isothermic, isobaric,
	isochoric and adiabatic processes. Entropy change for ideal gases (T & V as variables,
	P & T as variables), Numerical.

Co	urse Outcome : After finishing this course, the student will be
1.	To analyze and explain the atomic and molecular arrangements in solids, comprehend the
	relationships between structure and properties, and apply their knowledge to predict and interpret
	the behaviour of solid materials in various fields such as materials science, solid-state physics,
	and crystallography.
2.	Able to analyze and interpret the coordination behaviour of metal complexes, comprehend acid-
	base theories and their applications in chemical reactions, and apply their knowledge to predict
	and explain the reactivity and properties of coordination compounds and acid-base systems in
	various areas such as inorganic chemistry, catalysis, and bioinorganic chemistry.
3.	Able to analyze and interpret the rates of chemical reactions, understand the factors affecting
	reaction rates, comprehend the periodic trends in atomic and molecular properties, and apply their
	knowledge to predict and explain the behavior of chemical reactions and the properties of
	elements across the periodic table in various fields such as physical chemistry, environmental
	chemistry, and materials science.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between	CO1	✓			✓	✓	✓			✓	\checkmark
CO and	CO2	✓	\checkmark				✓		✓		\checkmark
PSO	CO3			✓		✓	✓	✓		✓	\checkmark
	CO4	✓			✓						
	CO5		✓	✓		✓		✓		✓	
	CO6	\checkmark			~						\checkmark

Course content

Course name: Bachelor of Science (Fundamentals of Chemistry- I)	Semester I	hrs
Unit-1	ATOMIC STRUCTURE Historical Perspective Of Atomic Structure : RuatherFord's Atomic Model, Bohr's Theory And Its Limitation, Spectrum Of Hydrogen Atom (Lyman, Balmer, Paschem, Brackett & P Fund(, Quantum Numbers, Auf Bau, Hund And Pauli Exclusion Principles, Penetration And Shielding, Effective Nuclear Charge (Slater Rule)	11
Unit – 2	ORGANIC QUALITATIVE ANALYSIS Introduction, Elemental Analysis(Lessing's Test With Equation),Solubility of Organic Compound (Ref.Vogel's Qualitative Organic Analysis),Chemical Method: Solubility In NaHCO ₃ ,NaOH - HCl, Acid – Base, Phenol, Amphoteric Compound (Sulphanic Acid and Anthranilic Acid)	12
Unit -3	IUPAC NOMENCLATURE OF ORGANIC COMPOUND Introduction, Functional Group, Homologous Series, Nomenclature, Rules For Nomenclature, Nomenclature Of Organic Compounds ,Examples, Exercise.	11
Unit -4	THERMODYNAMICS Introduction, sign convention, system (open,close and isolated), first law of thermodynamics, work done in isothermal and adiabatic changes, Heat content (Euthalpy), molar heat, mechanical work, heat , temperature and energy Heat, work and thermodynamics. Heat capicities., joule Thomson effect.	12

SEMESTER - I

CHEMISTRY - II

INTRODUCTION OF CHEMISTRY - I

Course	CO 1: understand basic concepts Arrhenius theory, Lowry Bronsted theory, Lewis								
Objectives:	theory, Solvent – Solute concept of acid base, Soft-Hard acid base and its application.								
	CO 2: understand basic concepts of organic qualitative analysis : elements equation								
	,solubility of organic compound.								
	CO 3: Study definition of space lattice, Unit cell, Difference between crystalline and								
	amorphous state, types of crystals with illustrations, Law of crystallography. Steno's								
	law and laws of symmetry, lattice planes, Miller indices, Bravais indices, type of cubic								
	system, diagrammatic representation of cubic system and d100, d110, d111 planes,								
	Bragg's equation (X-ray diffraction), Crystal structure of NaCl, KCl.(Numerical based								
	on Bragg'sequation and Miller indices)								
	CO 4: to develop skills for quantitative estimation using the different branches of								
	volumetric analysis								

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between											
CO and	CO1	✓			\checkmark	✓	✓			✓	✓
PSO	CO2	✓	✓		✓				~		
	CO3			~		~	✓	~		~	✓
	CO4	\checkmark				\checkmark			\checkmark		

Co	urse Outcome : After finishing this course, the student will be
1.	To analyze and explain the atomic and molecular arrangements in solids, comprehend the
	relationships between structure and properties, and apply their knowledge to predict and interpret
	the behaviour of solid materials in various fields such as materials science, solid-state physics,
	and crystallography.
2.	Able to analyze and interpret the coordination behaviour of metal complexes, comprehend acid-
	base theories and their applications in chemical reactions, and apply their knowledge to predict
	and explain the reactivity and properties of coordination compounds and acid-base systems in
	various areas such as inorganic chemistry, catalysis, and bio inorganic chemistry.
3.	Able to analyze and interpret the rates of chemical reactions, understand the factors affecting
	reaction rates, comprehend the periodic trends in atomic and molecular properties, and apply their
	knowledge to predict and explain the behaviour of chemical reactions and the properties of
	elements across the periodic table in various fields such as physical chemistry, environmental
	chemistry, and materials science.

Course name: Introduction of Chemistry	Semester I									
Unit-1	ACID-BASE THEORIES Introduction, Definition Of Acid and Base, Arrhenius Theory, Lowry Bronsted Theory, Lewis Theory, Solvent – solute concept of acid –base, Soft – Hard acid base and it's application.	11								
Unit – 2	 ALKANES AND CYCLOALKENES A) Alkens: Introduction, Nomenclature, Sources, Methods Of formation with special reference To Wurts Reaction ,Kolbe reaction And decarboxylation of carboxylic acid , physical properties and chemicals Reaction. B) Cycloalkenes: Introduction, Nomenclature, methods of formation chemical reactions, Baeyer's strain theory and It's limitation ,theory of strain less Ring. 	12								
Unit-3	SOLID STATE Definition Of Space Lattice, Unit Cell, Difference Between Crystalline And Amorphous State, Types Of Crystals With Illustrations, Law Of Crystallography. Steno's Law And Laws Of Symmetry, Lattice Planes, Miller Indices, Bravais Indices, Type Of Cubic System, Diagranmatic Representation Of Cubic System And D ₁₀₀ , D ₁₁₀ , D ₁₁₁ , Planes, Bragg's Education. (X-Ray Diffraction), Crystal Structure Of Nacl, Kcl, (Numerical Based On Bragg's Eduation And Miller Indices)	12								
Unit - 4	 Titricmetric methods of analysis Introduction, type of volumetric titration A) Acid-base titration: definition, indicator used, standard solutions, definition of P^H B) Redox titration : principle, types of redox titration (external and internal), indicator used standard solutions C) Precipitation titration : theory, indicators, standard solution D) Complexometric titration : theory, standard solution, EDTA structure and its equilibric related to p^H, metolochromic indicators. 	11								

REFERENCE BOOKS:	1. Essentials of physical chemistry by A.S. Bhal and Pub. S. Chand,							
	G.D. Tuli.							
	2. Advance physical chemistry by D.N. Bajpai, Sub: S. Chand							
	3. Numerical problems by Dogra And Dogra (For Numerical)							
	4. Concise inorganic chemistry (5 th Ed) by J.D. Lee.							
	5. Basic inorganic chemistry by Cotton & Wilkinson.							
	6. Organic chemistry Vol. I & Vol. II by I.L. Finar							
	7. Organic chemistry by P.L. Soni							
	8. Organic chemistry by B.K. Sharma							
	9. Organic chemistry by Bahl and Bahl							
	10. Organic reaction mechanism by Mukharji & Singh							
	11. Fundamentals of organic chemistry by Soloman John Wiley							

CHEMISTRY PRACTICAL – I

Course	CO1: To provide students with hands-on experience and skills in conducting qualitative
Objectives:	tests to identify organic compounds based on their functional groups and chemical
-	properties, as well as understanding the principles and techniques of organic qualitative
	analysis.
	CO2: To provide students with practical skills and knowledge in performing volumetric
	analysis, including the principles, techniques, and calculations involved in accurate
	titrations.

Course Outcome : After finishing this course, the student will have

- 1. able to perform a range of qualitative tests to identify organic compounds, interpret the results of these tests to determine functional groups and compound identities, apply their knowledge of organic reactions and properties to conduct appropriate tests, and develop critical thinking and analytical skills in organic compound identification.
- 2. Able to perform various volumetric titrations, accurately measure volumes of solutions and perform calculations to determine the concentration of analyses, understand the principles of different types of titrations, analyze experimental data, and apply their knowledge and skills in quantitative analysis and titration-based experiments.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between CO and	CO1	~	~		~	~		~		~	
PSO	CO2		~	~		~	✓		✓	~	✓

OPCANIC	Primary Tasta Ignition Tast Dataction Of Elements Natura Of The
	- Finally rests, Ignition rest, Detection of Elements Nature of The
SPOTTING	Substance (Solubility Test), Functional Group Tests, C.T., Molecular
	Formula, Structural Formula & M.P. / B.P. Of The Given Substance.
	- ACID – Benzoic Acid, Phthalic Acid, Salicylic Acid
	- BASE – Aniline, P&O Nitro Aniline
	- PHENOL – α -Naphthol, ^{β} -Naphthol
	- NEUTRAL –
	- CARBOHYDRATE – Glucose, Fructose
	- KETONE – Acetone, Acetophenone
	ALCOHOL – Methanol, Ethanol
	HALOGENATED HYDROCARBON -Chlorobenzene
	NITRO HYDROCARBON - Nitrobenzene
	AMIDE – Urea
	- ANILIDE – Acetanilide
	N.B. Candidate Should Perform At Least 08 Organic Exercises.

VOLUMETRIC EXERCISE

1.	To given solution of 0.1 N HNO ₃ by using this solution to find out Normality and concentration
	of NaOH and H ₂ C ₂ O4.2H ₂ O
2.	To given solution of 0.1 N H ₂ SO ₄ by using this solution to find out Normality and concentration
	of NaHCO ₃ and HNO ₃
3.	To given solution of 0.09 N KMnO ₄ by using this solution to find out Normality and
	concentration of $H_2C_2O_4$ and KOH
4.	To given solution of 0.1 N KMnO ₄ by using this solution to find out Normality and concentration
	of FeSO ₄ and K ₂ Cr ₂ O ₇
	N.B. Candidate Should Perform At Least 2 Volumetric Exercises.

SEMESTER-II CHEMISTRY - I Fundamentals of chemistry – II

Co	urse Outcome : After finishing this course, the student will have
1.	Be able to perform qualitative analysis experiments to identify the presence of various ions and
	functional groups in chemical samples, interpret experimental observations to determine
	compound identities, understand the fundamental principles of atomic structure and spectroscopic
	techniques, and apply their knowledge in qualitative analysis and atomic structure to solve
	analytical and theoretical problems in chemistry.
2.	Able to perform experimental procedures to investigate and analyze chemical bonding in
	different compounds, apply spectroscopic techniques to study molecular structures, measure
	thermodynamic parameters such as enthalpy and entropy changes, and apply their practical skills
	in understanding the principles of chemical bonding and thermodynamics, as well as interpreting
	experimental data in these areas.
3.	Able to measure and analyze conductance values of electrolytic solutions, investigate and
	understand the behaviour of ionic equilibrium, perform experiments to determine physical
	properties of organic compounds and relate them to their chemical constitution, and apply their
	practical skills to analyze and interpret experimental data, enhancing their understanding of these
	fundamental concepts in chemistry.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between	CO1	\checkmark	\checkmark		✓	✓		\checkmark		\checkmark	
CO and	CO2		✓	✓		✓	✓		✓	✓	\checkmark
PSO	CO3	✓			✓		✓	✓	✓		\checkmark
	CO4		✓		✓				✓		
	CO5	✓	✓			✓	✓			✓	\checkmark
	CO6			\checkmark	\checkmark			✓			

Course content

Course name: Bachelor of Science (Fundamentals of Chemistry- II)	Semester II				
Unit-1	EMPIRICAL FORMULA ,MOLECULAR FORMULA AND STRUCTURAL FORMULA Introduction, Empirical Formula, Molecular Weight, Department Of Empirical Formula Determination Of Molecular Weight Of: (A)Organic Acid By Titration And Silver Salt Method (B)Organic Base By Chloroplatinate Method Determination Of Molecular Formula Of Gaseous, Hydrocarbons By Explosion Method , Numerical.	11			
Unit – 2	 INORGANIC QUALITATIVE ANALYSIS Introduction, A) Dry test: Color of the substance State of the substance Solubility Theory of borex bead test and flame test Proximate interpretation from dry test B) Analysis of cation : Group anion of sequence, importance of solubility product constant of each group, common ion effect, cation confirmative test with suitable reagent, cu⁺⁺, Fe⁺⁺⁺, Ni⁺⁺ C) Analysis of anion : Based on precipitation or gas evolved, making in Cd & Cu, separation of ion pair such as Ag & Hg, Zn & Mn 	12			
Unit -3	CHEMICAL BONDING Definition Of Chemical Bonds (Covalent, Co-Ordinate Covalent, Ionic, Metallic, H-Bond, van der Waals Forces Of Attraction), Polarisability (Fajan's Rule), Molecular Orbital Theory, Lcao Method, Bonding Molecular Orbital, Non-Bonding Molecular Orbital, Anti-Bonding Molecular Orbital, Bond Order, Magnetic Properties And Molecular Orbital Energy Level Diagram Of Hetero Diatomic Molecule : CO And NO and O ₂ Vsper Theory.	12			
Unit -4	CHEMICAL KINETICS Chemical kinetics and it's scope, rate of reaction ,factors affecting, rate of reaction: temperature, concentration ,pressure, solvent, light and catalyst, molecularity of reaction, classification of chemical reaction, order of reaction with Illustration. second order (a=b) Half life and mean life.	11			

REFERENCE BOOKS :	 Essentials of physical chemistry by A.S. Bahl and G.D. Tuli, Pub :S. Chand Inorganic chemistry by Wahid Malik, G.D. Tuli, R.D. Madam : Pub. S. Chand Advance inorganic chemistry (Vol.2) by G.D.Tuli, R.D. Madam: Pub.S. Chand Physical chemistry by Arun bahl, B.S. Bahl and G.D. Tuli, Pub: S. Chand Advance physical chemistry by D.N. Bajpai, Pub: S. Chand

SEMESTER-II CHEMISTRY - II Introduction of chemistry – II

Course	CO-1: identify Alkenes: Nomenclature, method of preparation, properties and					
Objectives:	uses of ethylene and propylene Morkwonikoffs rule and Satytzeff rule,					
C C	polymerization of ethylene styrene and vinyl chloride.					
	CO-2 determine empirical formula and its relation with molecular formula					
	e de la celebra de la companie de la companie de la companie de la celebra de la celeb					
determination of molecular weight of organic acid by titration and silv						
	method and organic base by chloroplatinate method and its limitations.					
	CO-3 : Define of atomic and ionic radii, ionisation energy, electron affinity and					
	electron negativity, S-Block elements: Comparative study, diagonal relationship,					
	salient features of hydrides.					
	CO-4: define the term carbohydrate, its classification, structure of glucose					
	and fructose, conversion of glucose to fructose and fructose to glucose, step					
	up, step down and kilyani synthesis					

Co	urse Outcome : After finishing this course, the student will be
1.	To analyze and explain the atomic and molecular arrangements in solids, comprehend the
	relationships between structure and properties, and apply their knowledge to predict and interpret
	the behaviour of solid materials in various fields such as materials science, solid-state physics,
	and crystallography.
2.	Able to analyze and interpret the coordination behaviour of metal complexes, comprehend acid-
	base theories and their applications in chemical reactions, and apply their knowledge to predict
	and explain the reactivity and properties of coordination compounds and acid-base systems in
	various areas such as inorganic chemistry, catalysis, and bioinorganic chemistry.
3.	Able to analyze and interpret the rates of chemical reactions, understand the factors affecting
	reaction rates, comprehend the periodic trends in atomic and molecular properties, and apply their
	knowledge to predict and explain the behaviour of chemical reactions and the properties of
	elements across the periodic table in various fields such as physical chemistry, environmental
	chemistry, and materials science.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between CO and	CO1	~	\checkmark		~	~		~		~	\checkmark
PSO	CO2		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
	CO3	✓		✓	✓			✓			
	CO4		✓		✓		✓			✓	

Course Content

Course		-
name:	Semester II	hrs
(Chemistry)	AI KENES DIENES AND AI KVNES	
Unit-1	 (A) Alkenes, Dienes And Alkynes: Nomenclature, Method Of Preparation, Properties And Uses Of Ethylene And Propylene, Morkwonikoffs And Saytzeff Rules. Alkenes Reaction, Hydroboration, Oxidation, Epoxidation, Ozonolysis. (B) Dienes: Nomenclature, Classification Of Dines Method Of Formation Of Butadine, Chemical Reaction of 1,2 And 1,4 Addition. (C) Alkynes: Nomenclature Method Of Formation Chemical, Reaction:- Hydroboration, Oxidation, Reduction, Polymerization. 	11
Unit – 2	REACTION MECHANISM The General Nature, reaction mechanism of application of following reaction: (1) Reimer-Tiemer reaction (2) Aldol condensation (3) Michael reaction (4) Fridel craft reaction (5) Perkin Reaction,	12
Unit-3	IONIC EQUILIBRIUM AND CONDUCTANCE. Electrical Conductance, Specific Conductance, Equivalent Conductance, Molar Conductance, Effect Of Dilution On Concentration, Cell Constant, Determination Of Cell Constant, Ostwald's Dilution Law And Its Limitations, Acid And Basic Buffer Actions (Henderson- Hasselbach Equation), Buffer Capacity, Numerical.	12
Unit-4	CARBOHYDRATES Modern Definition Of Carbohydrates, Classification Of Carbohydrates, Function Of Carbohydrates, Optical Isomers, Diastereoisomers, Enantiomers Racimates Of Glucose And Fructose Stricture Of Glucose And Fructose Isomers, Mutarotation, Glucoside Linkage (Pyranose And Furanose) D & L Isomers Of Glucose And FRUCTOSE, Derivatives Of Monosaccharide Step Up And Stepdown Synthesis, Kilyani Synthesis, Conversion Of Glucose To Fructose And Conversion Of Fructose To Glucose.	11

REFERENCE	1. Essentials of physical chemistry by A.S. Bhal and Pub. S. Chand, G.D.				
BOOKS:	Tuli.				
	2. Advance physical chemistry by D.N. Bajpai, Sub: S. Chand				
	3. Numerical problems by Dogra and Dogra (For Numerical)				
	4. Concise inorganic chemistry (5 th Ed) by J.D. Lee.				
	5. Basic inorganic chemistry by Cotton & Wilkinson.				
	5. Organic chemistry Vol. I & Vol. II by I.L. Finar				
	7. Organic chemistry by P.L. Soni				
	8. Organic chemistry by B.K. Sharma				
	9. Organic chemistry by Bahl and Bahl				
	10. Organic reaction mechanism by Mukharji & Singh				
	11. Fundamentals of organic chemistry by Soloman John Wiley				

Chemistry Practical-II

Course	CO1: To provide students with practical training and knowledge in the identification
Objectives:	and characterization of inorganic compounds through systematic qualitative analysis
	techniques. CO2: to provide students with practical skills and knowledge in the accurate preparation of standard solutions of known concentration for use in quantitative analysis.

Course Outcome : After finishing this course, the student will have

Able to perform qualitative tests and analysis to identify the presence of various cations and anions in inorganic samples, interpret experimental observations to determine compound identities, apply knowledge of inorganic chemistry principles and reactions to conduct appropriate tests, and develop critical thinking and analytical skills in the field of inorganic qualitative analysis.
 Able to prepare standard solutions with precise concentrations, follow proper laboratory

2. Able to prepare standard solutions with precise concentrations, follow proper laboratory techniques and procedures for solution preparation, understand the principles and calculations involved in dilution and standardization, and apply their knowledge and skills in the preparation of standard solutions for various analytical techniques in chemistry.

Mapping between		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO and	CO1		✓		✓		✓	✓		✓	✓
PSO	CO2		✓	✓		✓			✓	✓	

	List Of Inorganic Chemicals :
INORGANIC	
QUALITATIVE	CHLORIDES : Cu^{+2} , Fe^{+3} , Mn^{+2} , Co^{+2} , Ni^{+2} , Ca^{+2} , Sr^{+2} , Na^{+} , K^{+} ,
ANALYSIS	NH_4^+, Ba^{+2}
	BROMIDE : Na^+ , K^+ , NH_4^+
	IODIDE : K ⁺
	NITRATE : Pb^{+2} , Co^{+2} , Ni^{+2} , Ba^{+2} , Sr^{+2} , Na^{+} , K^{+}
	SULPHIDE : Zn ⁺²
	SULPHATE : Cu ⁺² ,Al ⁺³ , Fe ⁺² , Zn ⁺² , Mn ⁺² , Ca ⁺² , Ni ⁺² , Mg ⁺² , Na ⁺ ,
	K^+ , NH_4^+
	CHROMATE : Na^+ , K^+
	CARBONATE : Cu^{+2} , Zn^{+2} , Mn^{+2} , Co^{+2} , Ni^{+2} , Ca^{+2} , Ba^{+2} , Sr^{+2} ,
	Mg^{+2} , Na^+ , K^{+} , NH_4^+
	PHOSPHATE : Cu^{+2} , Al^{+3} , Fe^{+3} , Zn^{+2} , Mn^{+2} , Mg^{+2} , Na^+ , K^+ , NH_4^+
	N.B. Candidate should perform the analysis of atleast 08 compounds.
	•

PREPARATION OF STANDARD SOLUTION (BY STUDENT) OF FOLLOWING :	 0.1 N Succinic acid against NaOH 0.1 N KHP against NaOH / KOH 0.01 N Na₂S₂O₃ against I₂ solution 0.1N H₂C₂O₄ 2H₂O against KMnO₄ solution 0.1 N K₂Cr₂O₇ against FeSO₄.7H₂O (OR) FeSO₄(NH₄)₂SO₄.10H₂O solution N.B. Candidate should perform atleast 02 volumetric exercises.

Г