VIDHYADEEP UNIVERSITY

M.Sc. Organic Chemistry

Teaching & Evaluation Scheme (Effective from 2023-24)

Semester - III & IV

	name: Ma Organic Cl		Semester III									
Grade Sy	Grade System:											
	Subject		Teaching	g Scheme		Examination Scheme		Passing Scheme				
Code	Paper No.	Paper Title	Hours/ week	Credit	The	Theory		Passing Head				
			Theory	Theory	Internal	External	Internal	External				
1171301	CY301	Heterocyclic Chemistry	4	4	30	70	12	28	100			
1171302	CY302	Organic synthesis-a disconneco n approach	4	4	30	70	12	28	100			
1171303	CY303	Pericyclic reaction	4	4	30	70	12	28	100			
1171304 (Core Subject)	CY304	Dyes and Intermediat es-I	4	4	30	70	12	28	100			
1171305	CY305	Practicals	12	8	60	140	24	56	200			

Course name: Master of Science (Organic Chemistry)			Semester IV								
Grade System: Subject			Teaching Scheme		Examination Scheme		Passing Scheme		Total		
Code	Paper No.	Paper Title	Hours/week	Credit	Theory		Passing Head		Marks		
			Theory	Theory	Internal	External	Internal	External			
1171401	CY401	Advance Organic Chemistry & Dyes	4	4	30	70	12	28	100		
1171402	CY402	Chemistry of natural	4	4	30	70	12	28	100		

		products & drugs							
1171404		Industrial	4	4	30	70	12	28	100
(For	CY403	Training	4	4	30	70	12	28	100
Internship)	01100	B	12	8	60	140	24	56	200

PO 1	Disciplinary	LOCF based curriculum M.Sc. Chemistry Course helps students to
	Knowledge	develop in depth knowledge of the areas like inorganic, organic,
	_	physical chemistry and analytical chemistry. The systematic and
		intensive knowledge will help them to excel in application of chemistry
		in real life.
PO 2	Communication	Chemists who engage in public communication:
	Skills	1. Increase public appreciation of and excitement for chemistry as a
		source of knowledge about the world.
PO 3	Critical	Although it is imperative in chemistry for a student to have the ability
	Thinking	to think critically, critical thinking is not the only important skill
		essential for overall success in chemistry. The students of Course will
		able to develop skills and attitudes
		Needed for critical thinking which will help them in a comprehensive
		problem solving approach. They will be exposed to the pedagogy that
		helps them understand chemistry in real life through class room training
		and case studies. It aims at building the basic ability to think critically,
		evaluate dispassionately and solve complex problems creatively.
PO 4	Problem	It involves an understanding of the language in which the problems
	Solving	stated, the interpretation of what is given in the problem and what is
		sought, an understanding of the science concepts involved in the
		solution, and the ability to perform operations if these are involved in
		the problem. Requiring students to use a worksheet with each problem
		may help them solve them in a more effective way. The worksheet
		includes a place for them to plan a problem.
PO 5	Analytical	Since many Chemistry experiments require Analytical reasoning which
	Reasoning	give students the ability to look at information, be it qualitative or
		quantitative in nature, and discern patterns within the information.
		Analytical reasoning is axiomatic in that its truth
		is self-evident.
PO 6	Research	Course encourages students to gain proper research skills required in
	related Skills	Chemistry.
		Ability to find research problems.
		Statistical Analysis will provide them research tools to identify solve
PO7	Toom world 0-	the research problems.
10/	Team work &	M.Sc. Chemistry practical, seminars are designed in such a manner and
	time	are done in groups, in bound time which helps to develop team work
	management	and time management skills through application of concept based
		practices, participative classroom discussion, problem solving task, case
		studies etc.

PO 8	Scientific	Inductive reasoning involves getting a collection of specific examples
100	Reasoning	and drawing a general conclusion from them. Deductive reasoning takes a general principle and then draws a specific conclusion from the general concept. Both are used in the development of scientific ideas in M.Sc. Chemistry course.
PO 9	Reflective Thinking	This course enables the students for reflective thinking and learning capacity, which is regarded as an essential attribute in the health professions to link theory with application and to address the challenges that arise in clinical practice. Reflective writing tools such as statements, essays, diaries, logbooks, portfolios and journals have been used to enhance the reflective thinking process.
PO 10	Digital Literacy	The chemistry curriculum covers teaching information literacy, scientific advancement requires chemists to know and build upon what research has been done before. This course encourages the learners to use digital resources by adopting latest technologies to survive and excel in ever-changing global scenario.
PO 11	Self-Directing Learning	This course enables the students to have self directing learning approach. The course has been formulated in such a way that these will help the learners to postulate questions, eliciting responses from various sources and finding out the most suitable solutions to relevant problems. This encourages them towards the self direction, experimentation and intrinsically motivated Research work.
PO 12	Multicultural Competence	Since the students of this course come from various states and cultures, pass graduates possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and Interact respectfully with diverse groups.
PO 13	Moral & ethical Values	Course has been designed in such a manner that it inculcates moral & ethical values in the learners. These values will help them not only to be successful, skilful professionals but also to be persons having responsible approach towards environment, nation & society.
PO 14	Leadership readiness/ qualities	Programme pass post graduates have the capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision and using scientific skills to guide people to the right destination, in a smooth and efficient way.
PO 15	Lifelong Learning	Programme pass post graduates has the ability to acquire knowledge and skills, including 'learning how to learn, that are necessary for participating in learning activities throughout life, through self- paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge and skill development

Objective	The primary goal of the M.Sc. Organic Chemistry program is to equip students with
of Program	the skills and knowledge necessary to pursue dynamic careers in industry and
	academia by offering a superb teaching and research environment in both core and
	emerging areas of the discipline.

Program	PSO1: Foster a scientific mindset and convey scientific knowledge with clarity,
Specific	brevity, and accuracy.
Outcomes	PSO2: Explore employment prospects in the chemical sector, including dye and
	pharmaceutical industries, as well as national laboratories and research centers, at all
	hierarchical levels.
	PSO3: Utilize expertise in sustainable and environmentally-friendly technologies.
	PSO4: Develop a capacity for logical reasoning to effectively tackle issues and
	achieve outcomes.
	PSO5: Fostering a research-oriented culture to promote Ph.D. programs at national
	and international institutes/universities.
	PSO6: Engage in targeted competitive exams organized by public service
	commissions and other governmental agencies.
	PSO7: Acquire and employ foundational knowledge to establish small-scale
	industries in the context of the self-reliant India (Atma Nirbhar Bharat) initiative.
	PSO8: Increase the production scale of synthetic products from laboratory to pilot-
	level plant, and subsequently to bulk production.
	PSO9: Promote a scientific mindset among students in preparation for cultivating a
	research culture and implementing policies at both the global and local levels.
	PSO10: Articulate scientific information clearly through both written and oral
	communication.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between	PO1		✓	✓			✓	✓	✓	✓	✓
POs	PO2	✓		✓		✓		✓	✓	✓	✓
and PSOs	PO3	✓		✓	✓	✓				✓	✓
	PO4	✓	✓	✓	✓		✓	✓		✓	✓
	PO5		✓	✓	✓			✓			✓
	PO6	✓		✓	✓	✓	✓			✓	✓
	PO7		✓	✓	✓	✓			✓		✓
	PO8	✓	✓		✓			✓	✓	✓	
	PO9	\checkmark		✓	✓	✓	✓			\checkmark	\checkmark
	PO10		✓	✓	✓	✓			✓		✓
	PO11	\checkmark		✓	✓	\checkmark	✓			\checkmark	\checkmark
	PO12		✓	✓	✓	✓			\checkmark		\checkmark
	PO13		✓	✓			✓	✓	✓	✓	✓
	PO14	✓		✓		✓		✓	✓	✓	✓
	PO15	✓		✓	✓	✓				✓	\checkmark

M.Sc (Organic chemistry)

SEM-III

CY301: HETEROCYCLIC CHEMISTRY

CO1: Nomenclature of heterocyclic compounds, fused and bridged heterocycles
CO2: Preparation and properties of aziridine, azirine, oxiran, thiirane, diazirine
and oxaziridine, azetidine, oxetane, thietane
CO3: Preparation and properties of pyrazole, imidazole, oxazole, thiazole,
isoxazole, oxazole, isothiazole, isothiazole, indole, benzofuran, thianaphthene, of
isoindole, indolizine, dibenzofuran, isobenzofurans, carbazole, triazole and
tetrazole.
CO4: Preparation and properties of six membered heterocycles.

Unit-I	Nomenclature of Heterocyclic Compounds							
	Introduction, Hanzch-Widman nomenclature for monocyclic, fused and bridged							
	heterocycles							
Unit-II	Three and four membered heterocycles							
	Preparation and properties of aziridine, azirine, oxiran, thiirane.							
	Preparation and properties of diazirine and oxaziridine.							
	Preparation and properties of azetidine, oxetane, thietane.							
Unit-III	Five-membered Heterocycles							
	Preparation and properties of pyrazole, imidazole, oxazole, thiazole.							
	Preparation of isoxazole, oxazole, isothiazole, isothiazole.							
	Preparation and properties of indole, benzofuran, thianaphthene.							
	Preparation of isoindole, indolizine, dibenzofuran, isobenzofurans, carbazole.							
	Preparation and properties of triazole and tetrazole.							
Unit-IV	Six-membered Heterocycles							
	Preparation and properties of pyridine, pyran, pyrimidine, pyridazine and							
	pyrazine.							
	Preparation of 2-pyrones and 4-pyrones.							
	Preparation and properties of quinoline, isoquinoline, acridine,							
	phenanthridine, quinazoline, quinoxaline and cinnoline							
	Preparation of benzopyran, benzo-2-pyrones and benzo-4-pyrone.							

- 1. Heterocyclic Chemistry by R.K. Bansal.
- 2. An introduction to the Chemistry of Heterocyclic Compounds by R.H.Acheson.
- 3. Chemistry of Heterocyclic compounds by J.J. Trivedi
- 4. Heterocyclic Chemistry by R.R. Gupta, M.Kumar and V. Gupta, Springer.

- 5. The Chemistry of Heterocycles by T. Eicherand S. Hauptmann.
- 6. Heterocyclic chemistry by J.A. Joule, K. Mills & G.F. Smith.
- 7. Comprehensive Heterocyclic Chemistry by A. R. Katritzky and C. W. Rees
- 8. Heterocyclic Chemistry by T. L. Gilchrist.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO
between											10
CO and	CO1	\checkmark		✓	✓	✓	✓			\checkmark	✓
PSO	CO2	\checkmark	✓	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	CO3	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
	CO4	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark

Course Outcome : After finishing this course, the student will have the ability to

Understand of the fundamental concepts and applications of heterocycles in chemistry

Developed an appreciation for the distinctive characteristics and practical uses of heterocycles in chemistry

Developed an ability to produce heterocycles on theoretical base.

Developed knowledge regarding the synthesis, properties, and applications of different heterocyclic compounds.

CY302: ORGANIC SYNTHESIS-A DISCONNECTION APPROACH

Course	CO1: Explanation of one group disconnection and two group
Objectives:	disconnection considering various examples.
	CO2: Reversal of polarity meaning, explanation (Unpolung) various
	examples in which polarity of carbon is reversed
	CO3: Protection and deprotection of various functional groups, various
	reagents for and examples.
	CO4: Disconnection of acyclic and cyclic heterocompounds, synthesis of ethers,
	amines, nitrogen and oxygen containing five and six membered heterocyclic
	compounds.

Unit-I	Disconnection fundamental											
	Disconnection fundamentals, explanation of synthons, synthetic											
	equivalents considering various examples, concept and design of synthesis											
	for molecules, criteria for good disconnection.											
	Explanation of one group disconnection and two group disconnection considering various examples.											
Unit-II	Diels-Alder reaction											
	Disconnections considering use of Diels-Alder reaction concept and its use											
	in synthesizing organic molecules. Reversal of polarity meaning,											
	explanation (Unpolung) various examples in which polarity of carbon is											
	reversed											
Unit-III	Ring synthesis											
	Protection and deprotection of various functional groups, various reagents											
	for and examples.											
	Ring synthesis: three and four membered cyclic compounds.											
Unit-IV	Acyclic and cyclic heterocompounds											
	Disconnection of acyclic and cyclic heterocompounds, synthesis of ethers,											
	amines, nitrogen and oxygen containing five and six membered											
	heterocyclic compounds.											
	Il-logical two disconnection and synthesis of 2-hydroxy carbonyl											
	compounds, 1, 2- diols, 1, 4-diols and 1,6-carbonyl compounds.											

- 1. Designing Organic Synthesis by S. Warren, Wiley.
- 2. Some Modern Methods for Organic Synthesis by W. Carruthers.
- 3. Advanced Organic Chemistry Part B by F. A. Carey and R. J. Sundberg.
- 4. Organic Synthesis Concept, Methods, Starting Materials by J. Fuhrhop.
- 5. Modern Synthetic Reactions by H. O. House, W. A. Benjamin.
- 6. Disconnection Approach by Warren.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO
between											10
CO and	CO1	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
PSO	CO2		\checkmark	\checkmark		\checkmark	✓	\checkmark		\checkmark	\checkmark
	CO3	\checkmark					✓				
	CO4	\checkmark	\checkmark			\checkmark	\checkmark				\checkmark

Co	Course Outcome : After finishing this course, the student will have the ability to									
1.	Explanation of disconnection fundamental, design of molecules and criteria for good molecules									
2.	2. Reaction of Diels Alder for synthesizing organic molecule.									
3.	^{3.} Understanding of ring synthesis and it's applications.									
4.	Preparation of acyclic and cyclic hetero compounds.									

CY303: PERICYCLIC REACTION

Course	CO1:Provide knowledge of orbitals, molecular orbital symmetry, molecular orbital
Objectives:	of ethylene, 1,3- butadiene, 1,3,5-hexatriene and allyl systems, concerted
	reactions, classification of pericyclic reactions
	CO2: Understanding FMO approach for derivation of Woodward-Hoffman
	selection rules for cycloaddition and electrocyclic reactions, suprafacial and
	antarafacial cycloaddition.
	CO3: Information about 1, 3-Dipolar cycloaddition reactions, classification and
	applications. Sigma tropic reactions, superficial and antarafacial rearrangements,
	[1, j], Sigmatropic rearrangement of hydrogen, [1, j] and [i,j] Sigmatropic reactions
	of carbon, selection rules for [i,j]- Sigmatropic rearrangements using FMOs. The
	Cope and the Claisen rearrangements.
	CO4: Stereochemistry of six membered rings
	Shape of cyclohexane ring, monsubstuted and disubstited cyclohexane, physical
	properties, conformation and chemical reactivity in cyclohexanes, conformational
	Effects in six membered rings containing unsaturation. Six membered heterocyclic ri

Unit-I	Introduction to pericyclic reactions
	Orbitals, molecular orbital symmetry, molecular orbital of ethylene, 1,3-
	butadiene, 1,3,5-hexatriene and allyl systems, concerted reactions, classification
	of pericyclic reactions, derivation of selection rules through construction of
	correlation diagrams for cyclo-addition reactions and for electrocyclic reactions
	with 4n and $4n+2\pi$ electrons, conrotatory and disrotatory motions for electrocyclic
	ring opening and ring closure.

Unit-II	Introduction to Cycloaddition reactions
	FMO approach for derivation of Woodward-Hoffman selection rules for
	cycloaddition and electrocyclic reactions, suprafacial and antarafacial
	cycloaddition
Unit-III	Cycloaddition & Sigmatropic reactions
	1, 3-Dipolar cycloaddition reactions, classification and applications. Sigma tropic
	reactions, superficial and antarafacial rearrangements, [1, j], Sigmatropic
	rearrangement of hydrogen, [1, j] and [i, j] Sigmatropic reactions of carbon,
	selection rules for [i, j] - Sigmatropic rearrangements using FMOs. The Cope and
	the Claisen rearrangements.
Unit-IV	Advanced Stereochemistry
	Conformation and reactivity in acyclic compounds meaning of conformation and
	physical properties, conformational effects on the stability and reactivity
	Stereochemistry of six membered rings
	Shape of cyclohexane ring, monsubstuted and disubstited cyclohexane, physical
	properties, conformation and chemical reactivity in cyclohexanes, conformational
	effects in six membered rings containing unsaturation. Six membered heterocyclic ri

- 1. Designing Organic Synthesis by S. Warren, Wiley.
- 2. Some Modern Methods for Organic Synthesis by W. Carruthers.
- 3. Principles of Organic Synthesis by R. Norman and J. M. Coxon.
- 4. Advanced Organic Chemistry Part B by F. A. Carey and R. J. Sundberg.
- 5. Organic Synthesis Concept, Methods, Starting Materials by J. Fuhrhop.

Mapping between		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO and PSO	C01		\checkmark			~		✓		\checkmark	\checkmark
	CO2	✓	✓	✓			✓	✓	✓	✓	✓
	CO3	✓			✓				✓		
	C04	✓				✓	✓				✓

Co	Course Outcome : After finishing this course, the student will have the ability to									
1.	Students have knowledge of pericyclic reactions and it's selection rules									
2.	Students have ability to perform cycloaddition and Sigmatropic reactions problems.									
3.	Understanding of Cope-Claisen rearrangement and it's application.									
4.	4. Excellent knowledge of stereochemistry of organic compounds of six membered heterocyclic ring.									

CY304: Dyes and Intermediates-I

Course	CO1: To equip students with the necessary skills and knowledge to apply											
Objectives:	Diazotization, mechanism and different methods of diazotization and laws of											
	coupling, General introduction, classification and synthesis of Monoazo dyes,											
	Bisazo dyes and Azoic dyes.											
	CO2: To enable students to develop a deep understanding of the principles,											
	Theory of fluorescence, Classification of FWA and synthesis of important											
	member of each class and their uses											
	CO3: To provide students with a solid foundation in the theory, principles, and											
	applications of UV-Visible spectroscopy for the analysis of electronic transitions											
	and concentration of molecules in various chemical system, Various methods of											
	dyeing.											
	CO4: Pigments and heterocyclic dyes											

Unit-I	AZODYES
	General Introduction: Diazotization, mechanism and different methods of
	diazotization and laws of coupling, General introduction, classification and
	synthesis of Monoazo dyes, Bisazo dyes and Azoic dyes.
	Synthesis of the following:
	Disperse Red 13, Acid Blue 92, Mordant Black 3, Acid Black 1, Acid Blue 113,
	Direct Blue 15, Fast Orange GGD.
Unit-II	FLUORESCENT WHITENING AGENTS
	Introduction, Theory of fluorescence, Classification of FWA and synthesis of
	important member of each class and their uses.
	Types of Fibres and Basic Operations in Dyeing Process Types of fibres,
	Natural, semi synthetic and synthetic, Dyeing and Interactions: Ionic
	Interactions, Hydrogen bond, Van der Waal's Interactions and Covalent
	Interactions.
	Basic Operations in Dyeing Process: Preparation of the fibres, Preparation of the
	dyebath, application of the dyebath and finishings, Various methods of dyeing:
	Direct dyeing, Vat dyeing, Mordant dyeing, disperse dyeing and Formation of
	dye on the fibre.
Unit-III	Application of Dyes
	Classification of Dyes according to application and chemical constitution.
	Evaluation of dyes
	Dyes for Non-Textile Application
	Leather dyes, Paper dyes, Hair dyes, Food dyes, Ink dyes, Photographic dyes,
	Indicator dyes, Laser dyes, Liquid crystal dyes, Solar cell, biological uses of
	dyes.
	Synthesis of the following:
	Eriochrome Black T, Sunset Yellow FCF, Acridine Yellow G.
Unit-IV	Pigments & Heterocyclic Dyes
	a.Pigments
	Different classes of organic and inorganic pigments and their applications with

examples.
b. Heterocyclic Dyes
Pyrazolone dyes, cyanine dyes, dyes containing azine, oxazine and thiazine ring
systems, Thiazole Dyes
Synthesis of only the following:
Basic Yellow 11, Basic Orange 21, Rosinduline GG, Sirius Supra Blue FFRL,
Brilliant Alizarin Blue 3R, Acid Yellow 19.

Reference Books:

- 1. Chemistry of Synthetic Dyes & Pigments by Lubs.
- 2. Dyes and their intermediates by E. N. Abrahart.
- 3. Handbook of synthetic dyes and pigments, Vol. I & II by K. M. Shah.
- 4. Industrial Dyes by Klans Hunger, Germany by Wiley-VCH.
- 5. Development in the Chemistry and technology of Organic Dyes by J.Griffiths, Blackwell Sci. Pub., Oxford, London.
- 6. Advance in colour chemistry, series vol.-3, Modern colourants: Synthesis and structure, edited by A.T.Peters and H.S. Freeman, Blackie Academic & Professional.
- 7. Colour chemistry: Synthesis, properties and applications of organic dyes and pigments, Heinrich Zollinger VCH, Germany.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between CO	CO1	\checkmark	✓			\checkmark		~		\checkmark	\checkmark
and PSO	CO2	\checkmark			✓		✓		✓	✓	\checkmark
	CO3	✓	✓	✓	✓			✓			✓
	CO4	✓	✓			✓			✓		✓

Course Outcome : After finishing this course, the student will have the ability to

ľ	1.	Equipped with the necessary skills and knowledge to apply mathematical and statistical
		methods to analyze chemical data and solve problems in various fields of chemistry,
		including data analysis, modelling, and simulation.

- 2. Develop a deep understanding of the principles, instrumentation, and applications of various chromatographic techniques used for separation, identification, and quantification of chemical compounds in complex mixtures, and be able to select and apply the appropriate technique for different types of dyes.
- 3. Good knowledge about different types of dyes and it's application on textiles.
- 4. Understand the preparation and properties of different types of dyes.

CY305: Practicals

Course	CO1: To provide fundamental understanding of estimation of organic										
Objectives:	compounds.										
	CO2: Green synthesis applications.										
	CO3: The aim is to provide an understanding of distinct radicals through a										
	confirmatory test.										
	CO4: The process of producing metal salts of inorganic origin and subsequent										
	formation of crystals.										
	CO5: To provide fundamental understanding of the segregation process for										
	organic ternary mixtures.										
	CO6: Preparation of industrially important compounds and its properties										
	determination.										

Green Synthesis (Any four)

- 1. Preparation of acetanilide from aniline and acetic acid using Zn dust.
- 2. Base catalyzed aldol condensation using LiOH.H2O as a Catalyst.
- 3. Bromination of *trans*-stilbene using sodium bromide and sodium bromated.
- 4. [4+2] cycloaddition reaction in aqueous medium at room temperature.
- 5. Benzil Benzilic acid rearrangement under solvent free condition

Preparation of industrially important compounds by following Name reactions (Any four)

- 1. Advance Organic Chemistry reaction
- (P-chloro toluene from p-toluidine)
- 2. Fischer indole synthesis
- (1, 2, 3, 4-tetrahydrocarbazole from cyclohexanone and phenyl hydrazine)
- 3. Riemer-Tiemann reaction (Salicyladehyde from phenol)

Skraup synthesis (Quinoline from aniline)

4. Gabriel phthalimide synthesis

(Anthranilic acid from phthalic anhydride and phthalimide)

2-hydroxy 1-naphthaldehyde from beta-naphthol

Organic Estimations (Any Four)

- 1. Determination of Sulphonamides with Silver Nitrate solution by volumetrically.
- 2. Determination of aromatic primary amines by either diazotization or indirect diazotization.
- 3. Estimation of Benzyl Penicillin.
- 4. Determination of coupling value (C.V.) of Dye intermediates.
- 5. Non-aqueous titration of Sodium Benzoate.
- 6. Estimation of Isonazid.

Reference Books:

1. Comprehensive Practical Organic Chemistry by V.K. Ahluwalia and Ren Aggarwal.

2. Monograph on Green Chemistry Laboratory Experiments by Green Chemistry Task Force Committee, DST.

- 3. Quantitative analysis by Arther I. Vogel.
- 4. Quantitative analysis by V.K.Ahluwalia.
- 5. Quantitative analysis by Mann and sanders.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between CO	CO1	✓				\checkmark		\checkmark		\checkmark	\checkmark
and PSO	CO2	✓					\checkmark				\checkmark
	CO3				\checkmark			\checkmark		✓	\checkmark
	CO4	✓		\checkmark		\checkmark		\checkmark			\checkmark
	CO5	✓	✓				\checkmark		✓	✓	
	CO6	✓	✓		✓	✓		✓	✓	✓	

Cou	Course Outcome : After finishing this course, the student will have the ability to									
1.	Students have understanding of estimation of organic compounds using volumetric method.									
2.	Students have knowledge of how to prepare green synthesis.									
3.	Students have information about preparation of industrially important compounds using name reactions									
4.	Students have ability to separate out industrially important reactions.									

M.Sc (Organic chemistry)

<u>SEM-4</u>

CY401: Advance Organic Chemistry & Dyes

Course	CO1: To provide students with a deep understanding of the concept of										
Objectives:	aromaticity in organic chemistry, including its theoretical basis, properties, and										
	applications.										
	CO2: To provide students with an understanding of the latest advances in dyes										
	and name reactions in organic chemistry, including their design, development,										
	and applications in various industries.										
	CO3: To provide students with an understanding of the fundamental principles,										
	concepts, and applications of name reactions including Ugi reaction, Noyori										
	reaction, Wittig reaction, Peterson olefination reaction, Mannich reaction, Stille										
	reaction, Ene recation, Staudinger reaction, Corey-Fuchs reaction, Ritt										
	reaction, Mcmurry reaction, Birch reduction.										
	CO4: To provide students with an understanding of the principles and applications of organic chemistry in the context of industrial processes, including										
	the design, development, and scale-up of using different organic rearrangements										

Unit-I	General nature, method, mechanism and synthetic applications of the											
	following reaction Ugi reaction, Noyori reaction, Wittig reaction, Peterson olefination reaction,											
	Mannich reaction, Stille reaction, Ene reaction, Staudinger reaction, Corey-Fuchs											
	reaction, Ritter reaction, Mcmurry reaction, Birch reduction.											
Unit-II	General nature, method, mechanism and synthetic applications of the											
	following reactions;											
	Expansion and contraction of rings/Demajnov rearrangement											
	Favorskii rearrangement											
	Sommelet-Hauser rearrangement,											
	Rearrangement of N-nitrosoanilines (Fischer-Hepp rearrangement).											
	Fries rearrangement											
	Claisen rearrangement											
Unit-III	Dyes and Intermediates-II											
	Vat Dyes and Solubilized Vat dyes, Acid dyes, Mordant dyes and dyes for											
	cellulose acetate. Synthesis of only the following:											
	Indanthrene Orange 7RK, Indanthrene Yellow FFRK, Indanthrene Khakhi 2G,											
	Indanthrene Orange FFRK, Indanthrene Yellow 4GK, Anthracene Blue SWX,											
	General nature, classification, structural variation, synthesis and application of											
	fibres of the following classes of dyes:											

	(i)Reactive dyes (ii) Triphenylmethane dyes (TPM) (iii) Acid dyes									
	Synthesis of only the following:									
	Procion Brilliant Blue MR, Procion Brilliant Red H-3B, Remazol Brilliant Blue R									
	Malachite Green, Crystal Violet.									
Unit-IV	Dyes and Intermediates-III									
	General nature, classification, structural variation, synthesis and application of									
	fibres of the following classes of dyes:									
	(i) Disperse dyes (ii) Indigoid and Thio-indigoid dyes (iii) Cationic dyes									
	Synthesis of the following:									
	Disperse Yellow 16, Disperse Blue 14, Indanthrene Brilliant Pink R, Bismarck									
	Brown, Methylene Blue.									

- 1. Organic chemistry by J. Clayden, N. Greeves, S. Warren and P. Wothers
- 2. Some modern methods of organic synthesis by W. Carruthers (Cambridge)
- 3. Organic synthesis by Michael B. Smith
- 4. Advanced organic chemistry, Part B by F. A Carey and R. J. Sundberg
- 5. Guidebook to organic synthesis by R K Meckie, D M Smith and R A Atken
- 6. Strategic Applications of named reactions in organic synthesis by Laszlo Kurti and Barbara Czako
- 7. Organic Synthesis by Jagdamba Singh & L.D.S. Yadav, Pragati Prakashan

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between CO	CO1	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark
and PSO	CO2	\checkmark	✓		\checkmark		✓		\checkmark	✓	✓
	CO3	✓		✓	✓			✓			✓
	CO4		✓			✓			✓		✓

Co	urse Outcome : After finishing this course, the student will have a								
1.	. Understanding of the general nature, method, mechanism and synthetic applications of the								
	following reaction and organic synthesis.								
2.	Understanding of the latest advances in reagents and name reactions in organic chemistry								
	using different types of rearrangement reactions.								
3.	Understanding types of dyes and its application in various dyes industries and raw materials								
	production plants.								
4.	Able to apply their knowledge of organic chemistry to design and optimize synthetic routes								
	for the production of different types of dyes and to evaluate the economic and environmental								
	impact of these processes.								

CY402: CHEMISTRY OF NATURAL PRODUCTS & DRUGS

Course	CO1: To provide students information about alkaloids and vitamins.									
Objectives:	CO2: To provide students with a comprehensive understanding of Nucleic									
	acids and Terpenoids.									
	CO3: To equip students with a comprehensive understanding of the steroids									
	and hormones.									
	CO4: To provide students with a comprehensive understanding of the									
	principles, techniques, and applications of basic drugs									

Unit-I	Alkaloids & Vitamins										
	Alkaloids										
	Introduction and classification, Chemistry of atropine, coniine, and reserpine.										
	Synthesis of morphine, colchinine, strychnine, sceletium A4. Vitamins										
	Vitamins										
	Introduction and Chemistry of Vitamin A, E and K. Synthesis of riboflavin,										
	pyridoxine vitamin C, niacin, pantothenic acid, folic acid, vitamin-H.										
Unit-II	Nucleic acid & Terpenoids										
	Nucleic acid										
	Structure of nucleoside, nucleotide, and protein.										
	Terpenoids										
	Introduction, classification, Chemistry of eudesmol, zingiberene and										
	α- pinene.Synthesisof farnesol, santonine and longifolene.										
Unit-III	Steroids and Hormones										
	Constitution of cholesterol (no synthesis), Chemistry of progesterone and										
	testosterone. Synthesis of hormones: Hexosterol and stilbosterol, ACTH.										
Unit-IV	Basic concept of drugs										
	Introduction, Classifications: On the basis of their chemical structure and										
	therapeutic action, Nomenclature: Proprietary and Non-proprietary name,										
	Nomenclature of new drugs by WHO, Names of drugs: Generic and brand										
	names										
	Theories of drug action: Occupancy theory, Rate theory and induced fit theory										
	biological defense, chemical defenses, Furguson principle										
	Absorption of drugs: Routes of administration, factors that effect on absorption										
	Physio chemical properties: Solubility, Partition coefficients										

- 1. Organic chemistry by J. Clayden, N. Greeves, S. Warren and P. Wothers
- 2. Some modern methods of organic synthesis by W. Carruthers (Cambridge)
- 3. Organic synthesis by Michael B. Smith

4. Advanced organic chemistry, Part B by F. A Carey and R. J. Sundberg

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO
between CO and											10
PSO	CO1	✓	✓			✓		✓		✓	✓
	CO2	✓	\checkmark		✓		\checkmark		✓	\checkmark	\checkmark
	CO3	✓	\checkmark	\checkmark	✓			\checkmark			\checkmark
	CO4	\checkmark	\checkmark			\checkmark			\checkmark		\checkmark

Cou	Course Outcome : After finishing this course, the student will have a (An)					
1.	Knowledge of different natural products like Alkaloids and Vitamin C					
2.	Knowledge of different natural products like Nucleic acid & Terpenoids					
3.	Knowledge of different natural products like Steroids and Hormones					
4.	Knowledge of different basic drugs and its importance in pharmaceutical industries.					

M.Sc (Organic chemistry)

<u>SEM-4</u>

CY403: Industrial Training

Course Objectives:	CO-1: Inspect and maintain laboratory equipment to ensure safety and accuracy of results, Administered general maintenance and operational problem solving for laboratory equipment, Maintained laboratory equipments' proficiency and accuracy, Calibrated and maintained laboratory equipment/instruments.
	CO-2: Organic analysis for semi-volatile and acid-base-neutrals using GCMS, HPLC, GCFID, GCNPD, GCECD and IR, To Analyze Polymer's using HPLC.
	CO-3: To Develop methods for analytical chemistry in support of drug design and organic synthesis.
	CO-4: To perform sample preparation using wet chemistry, extraction, dilution and dissolution methods
	CO-5: To perform wet chemistry analysis including TSS, TDS, Percent Solids.

Mapping		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
between	CO1	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark
CO and	CO2	✓	✓		✓		✓		\checkmark	✓	✓
PSO	CO3	✓		✓	✓			✓			✓
	CO4	✓	✓			✓			✓		
	CO5	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark

Course	1. Since many Chemistry experiments require Analytical reasoning which give								
Outcome:	students the ability to look at information, be it qualitative or quantitative in nature,								
	and discern patterns within the information. It includes, comprehending the basic								
	structure of a set of relationships; recognizing logically equivalent statements								
	2. M.Sc. Chemistry practical, seminars are designed in such a manner and are done								
	in groups, in bound time which helps to develop team work and time management								
	skills through application of concept based practices, participative classroom								
	discussion, problem solving task, case studies etc.								
	3. Inductive reasoning involves getting a collection of specific examples and								
	drawing a general conclusion from them.Deductive reasoning takes a general								
	principle and then draws a specific conclusion from the general concept. Both are								
	used in the development of scientific ideas in M.Sc. Chemistry course.								
	4. This course enables the students to have self directing learning approach. This								
	encourages them towards the self direction, experimentation and intrinsically								
	motivated								
	Research work.								